
Selling pay-per-download products

INTRO

Many products – PDF books, songs, and online games, among others – are well suited for a pay-per-
download workflow. In such a case, customers buy products online and receive immediate access,
without requiring any action from the seller. eZ Publish provides a framework to quickly set up pay-
per-download products.

PAGE 1

In this article, we will set up a content structure to support products and associated downloads; install a
payment gateway (eZ PayPal); write an extension to assign the appropriate permissions to buyers when
they check out; and enhance the relevant templates so that buyers know where to download the files
they've purchased.

Requirements
This article is intended for eZ Publish developers who are comfortable working with PHP and eZ
Publish settings. The solution as a whole is not that complicated within the eZ Publish framework, but
it touches upon many eZ Publish concepts. To get the most out of this article, you should first have
some basic knowledge about: the content model
(http://ez.no/developer/articles/an_introduction_to_ez_publish_concepts/object_oriented_content_mod
el); sections and user permissions
(http://ez.no/developer/articles/section_segmentation_and_user_permissions_part_1_of_2)
(http://ez.no/developer/articles/section_segmentation_and_user_permissions_part_2_of_2); workflows
(http://ez.no/doc/ez_publish/technical_manual/4_0/concepts_and_basics/workflows); and the webshop
(see http://ez.no/doc/ez_publish/technical_manual/4_0/concepts_and_basics/webshop and Chapter 15
of http://ez.no/store/books/ez_publish_advanced_content_management). It would also be handy if you
have experience setting up some simple extensions
(http://ez.no/developer/articles/an_introduction_to_developing_ez_publish_extensions).

You should also have an eZ Publish 4.1 installation to work with, although the concepts and procedures
should be similar for other versions. This article uses eZ Publish 4.1.3 with the Website Interface.

In order to properly test the installation of the eZ PayPal extension, you must have a website with a
publicly accessible address. This is explained later in the article.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

The buyer experience
Before we delve into any code or even content, let's consider how we want the process to look from the
buyer perspective.

1. Buyer browses products and adds some to his/her online shopping cart

2. Buyer initiates checkout process and is prompted to pay for the product

3. Upon successful payment, buyer is presented with relevant download links on the confirmation
page and in the confirmation e-mail.

This is rather straightforward from the buyer's perspective. Let's now consider what we will need to do
to achieve this.

• Associate the actual downloads with products: We will do this by adding a related object
attribute to one of our product classes.

• Shopping cart and checkout process: This is a built-in eZ Publish feature and we will use most
of the defaults here.

• Payment process: We will install an existing PayPal payment gateway extension, making use of
the eZ Publish workflow system.

• Download permissions: We will write an extension to assign permissions at checkout so that the
buyer can access the files associated with the purchased products

• Confirmation page and e-mail: We will modify existing eZ Publish templates to add the
necessary download information.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Setting up the product and permissions structure
Our example site will sell PDF books, giving buyers the advantage of getting the book cheaper and
faster, and removing the need for us to ship the books.

In preparation for the following steps and to ease the testing process, log in to the Administration
Interface as an Administrator user, and create a user under the Members user group. This article will
name this user "Test User". This user will be your test buyer.

Product class

A default Website Interface installation comes with a basic "Product" class, consisting of at least a
name, a description, an image, and a price. The "Price" attribute is what makes the content object a
recognized product in the webshop, and the other attributes are useful for descriptive purposes.

For simplicity, we will assume that every product on our site represents a digital download. Therefore,
we will modify the existing "Product" class in order to associate a file with each Product object.

Sign in to the Administration Interface using the Administrator user account and go to the "Setup >
Classes" page. Then, click to view the classes in the "Content" class group. In the list of classes, click
the "Edit" icon for the "Product" class.

At the bottom of the "Class edit" interface for the "Product" class, add a new attribute of the "Object
relation" type. Name the attribute "Download file" with an identifier "download". For our purposes, we
will make this attribute required but not searchable.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

The reason why we are using an attribute of the "Object relation" datatype is so that we can store the
actual files in a location of the content tree separate from products. The products can be viewed by
everybody, but access to the download files will, by default, be prohibited to the general public and
granted to buyers as needed.

Location for download files
A good place to put the download files is in the media library, as the general public cannot browse that
section through the front-end of the site, and the fact that it is separate from the rest of the content
makes for better organization. Therefore, create a "Folder" object called "Downloads" in the media
library.

Under the "Downloads" folder, create a "File" object, uploading the file for a book you are selling.

Create a product object
Since we are using a Website Interface install we can use the existing products location and templates.
Browse to the "Content structure" tab in the Administration Interface, click to the "Products" folder,
then create a sub-item folder called "Books". Under the "Books" folder, create a "Product" object.
Give it whatever name, description, price, and image you want. When it comes to the "Download file"
attribute, add the "File" object you created above as the related object.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Once you have published your book product, view it on the front-end of the site, noting that the
download file is not used by the template and thus not publicly displayed.

Now, log in to the front-end of the site using the Test User account you previously created. If you try to
access the file directly on the front end (through a URL such as "yoursite.com/Media/Downloads/eZ-
Publish-Advanced-Content-Management-PDF"), you should get an "Access denied" error.

Pay-per-download role
Now, let's create create a role that will provide access to the files associated with purchased products.
Under the "User accounts" tab in the Administration Interface, click the "Roles and policies" link in the
left menu. Then, create a new role called "Pay-per-download" that has a policy giving permission to the
"read" function of the "content" module under the "Media" section.

This is a broad role that we will assign per-user, per-product using the subtree limitation. This
assignment will be done automatically at the end of the checkout process. However, you can test this
by assigning the role to the "Test User" account, with a subtree limitation of the "File" object you
created.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Then, see whether that Test User user can access "yoursite.com/Media/Downloads/eZ-Publish-
Advanced-Content-Management-PDF". When you have confirmed this, remove the role assignment.

Now that we've set up the content and permission structure for our pay-per-download functionality, we
can move on to the next step, which is installing a payment gateway.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Payment process
As there is already an in-depth article on installing a payment gateway (specifically, for eZ Authorize:
http://ez.no/developer/articles/installing_an_ez_publish_payment_gateway), this article will skip most
of the theory and focus on the practical steps.

In our example, we are requiring buyers to pay via PayPal before they can access the downloadable
products. The eZ PayPal account is a workflow event that will be triggered at the correct step in the
checkout process. It will handle the payment process on the PayPal site and return to the example site
upon successful payment.

PayPal Sandbox account
When setting up any sort of PayPal integration with a website, it is useful to sign up for a free PayPal
Sandbox (https://developer.paypal.com/) account. With such an account, you can create a test buyer
and test seller account and buy all the example products you want! Make sure you have a PayPal
Sandbox account before continuing, as you will need to use some test PayPal accounts shortly.

Note that in order to properly test the PayPal integration, you must also do your testing on a website
that has a publicly available address (that is, it cannot just be "localhost") in order for the PayPal
website to be able to communicate back.

Installing and configuring the eZ PayPal extension

The eZ PayPal extension can be downloaded at http://svn.ez.no/svn/extensions/ezpaypal/trunk/

Place the contents of that "trunk" folder into the folder extension/ezpaypal in your eZ Publish
installation. Then, activate the extension globally in settings/override/site.ini.append.php, adding it to
the "ActiveExtensions" list:

[ExtensionSettings]
ActiveExtensions[]
ActiveExtensions[]=ezpaypal

The eZ PayPal extension also has some of its own settings in extension/ezpaypal/settings/paypal.ini.
The only ones that we need to worry about for now are the PayPal server name (which we will set to
the PayPal Sandbox server) and the test PayPal seller account:

[ServerSettings]
#ServerName=https://www.paypal.com
ServerName=https://www.sandbox.paypal.com
RequestURI=/cgi-bin/webscr

field: "business"
e-mail of receiver
Business=yoursandboxaccount@blah.com

A final requirement of the eZ PayPal extension is that you force buyers on your site to have eZ Publish

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

user accounts. To do so, make sure that the webshop account handler is set to "ezdefault" in
settings/override/shopaccount.ini.append.php:

[AccountSettings]
Handler=ezdefault

To ensure that all of these configurations take effect, clear all caches, either from the right side of the
Administration Interface, or on the command line from the root of your install:

php bin/php/ezcache.php –clear-all

As is the usual process with eZ Publish 4.0 and higher, you must now re-generate the autoloads file,
either on the Setup > Extensions page in the Administration Interface, or on the command line from the
root of your install:

php bin/php/ezpgenerateautoloads.php -e -p

("-e" to generate the extension autoloads and "-p" to show a nice progress bar)

Setting up the eZ PayPal workflow

Although the eZ PayPal extension is now activated and ready to use, you must also instruct eZ Publish
on when to actually run it. This is where we will plug it into the workflow system. This involves
creating a workflow group, creating the workflow, and assigning it to run at the appropriate trigger; all
of this is done in the Administration Interface.

First, on the "Setup > Workflows" page, click the "New workflow group" button. Name the workflow
group "Payment gateways". Workflow groups serve only to organize workflows.

When viewing the new workflow group, click the "New workflow" button. Name the workflow
"Payment and Fulfillment", select "Event / Payment Gateway" from the dropdown list, and click the
"Add event" button.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Select the "Paypal" type, add a useful description, then click the "OK" button.

Your new workflow can now be assigned to the appropriate trigger. Click the "Triggers" link in the left
menu, then select "Payment and Fulfillment" as the workflow to run before the "checkout" function of
the "shop" module.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

More testing
To make sure that your PayPal workflow is running properly, you can buy your PDF product using
your Test User account. However, first log in to your PayPal Sandbox account.

After you add the PDF product to the shopping cart, proceed to check out, and click the "Confirm"
button, you should be redirected to the PayPal Sandbox site, prompting you to log in and pay for the
product (using your test PayPal account).

Of course, after you complete the payment and transaction, your "Test User" eZ Publish user should
still not have access to download the associated file – something we will work on next.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Extension: Assigning permissions upon purchase part 1
With the permissions structure in place, we need to create the workflow event that will assign buyers
the correct role with the correct limitation when they have checked out. We need to create a workflow
extension that will be triggered after the buyer has paid.

The framework for a workflow extension is quite straightforward, including the following extension
file and folder structure (beneath eZ Publish's "extension" folder):
payperdownload
-- eventtypes
---- event
------ payperdownload
-------- payperdownloadtype.php
-- settings
---- workflow.ini.append.php
---- payperdownload.ini

workflow.ini
In workflow.ini.append.php within your extension, you need to refer to the extension directory itself as
containing (a) workflow event(s), and specify the name of the event, prefixed by "event_":
<?php /* #?ini charset="utf-8"?

[EventSettings]
ExtensionDirectories[]=payperdownload
AvailableEventTypes[]=event_payperdownload

*/ ?>

payperdownloadtype.php
payperdownloadtype.php will contain all of the code you want to execute when the workflow is
triggered. For now, we will just set up the framework for the class using some boilerplate code:
<?php

class PayPerDownloadType extends eZWorkflowEventType
{
 const WORKFLOW_TYPE_STRING = "payperdownload";

 public function __construct()
 {
 parent::__construct(self::WORKFLOW_TYPE_STRING,
ezi18n('kernel/workflow/event', 'Pay Per Download'));
 $this->setTriggerTypes(array('shop' => array('checkout' =>
array('before'))));
 }

 public function execute($process, $event)
 {
 // Important code will go here

 return eZWorkflowType::STATUS_ACCEPTED;
 }
}

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

eZWorkflowEventType::registerEventType(PayPerDownloadType::WORKFLOW_TYPE_STRING,
'PayPerDownloadType');
?>

The "PayPerDownloadType" function defines the workflow event and specifies the trigger(s) for which
it is meant. The "execute" function will contain all of our important code to assign the role based on the
product(s) purchased. We will write this code shortly. The last line in the file registers our event with
eZ Publish.

For now our code does nothing, of course, but we should first make sure that our framework works
before we proceed.

Activate the extension
The extension is activated as is the normal process in site.ini.append.php, and we will do this in that file
in settings/override:
[ExtensionSettings]
ActiveExtensions[]
... other extensions are also activated in this list
ActiveExtensions[]=payperdownload

You should also clear the cache and regenerate the autoloads file as was described for the eZ PayPal
extension.

Tell eZ Publish when to use the workflow
We want our event to directly follow the PayPal payment event, and will actually use the same
workflow. Go to "Setup > Workflows" in the Administration Interface click the "Payment gateways"
workflow group, then edit the "Payment and Fulfillment" workflow. Add an event of the "Event / Pay
per download" type in this workflow.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

As our workflow event doesn't really do anything yet, you shouldn't notice any difference when you
use your "Test User" account to purchase a product. However, if you were able to add an event of the
"Pay Per Download" type in the Administration Interface, that means that eZ Publish has recognized
your workflow extension.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Extension: Assigning permissions upon purchase part 2

Workflow code in the "execute" function
Now we will program the heart of our workflow extension, using the eZ Publish API
<http://pubsvn.ez.no/doxygen/> and the variables that were passed to the "execute" function (in
"eventtypes/events/payperdownload/payperdownloadtype.php" in your extension) to perform the role
assignment(s). The process of writing this code from scratch would involve browsing through the API
and piece by piece code testing (using functions like var_dump(), die(), eZExecution::cleanExit()
<http://pubsvn.ez.no/doxygen/4.1/html/classeZExecution.html#58d7214394cc60d1bc84e781903e7ae>
as needed), which we will not delve into. However, if you are a relative beginner to the eZ Publish
API, it is worth browsing through the class lists and definitions to see all that is possible, as you have
even more possibilities when you're calling eZ Publish classes in PHP land than with eZ Publish
template operators. The classes are named intuitively, and the methods are grouped well and explained
in quite a lot of detail. Be sure to take the time to explore the classes, methods, and attributes used in
this article.

Role assignment(s)
The last part of our code is where we will start. Before the workflow is accepted and finished running,
we do the actual role assignment(s) using the eZRole::assignToUser <http://pubsvn.ez.no/doxygen/4.1/
html/classeZRole.html#a07120c612a36a400e5a3758390606c0> method:
$role = eZRole::fetch($roleID);
$role->assignToUser($userID, $limitIdentifier, $limitValue);

eZRole::expireCache();

The first line creates an eZRole object
<http://pubsvn.ez.no/doxygen/4.1/html/classeZRole.html#2cee5a342b5a32de49a874fb738aaef2> when
supplied a role ID. The second line assigns that role to a specified user, with a given limitation type
("Subtree" or "Section"; this will be "Subtree" in our case), and the actual limitation value, which is a
path of node IDs to the download file. The last line clears the role cache.

There is quite a bit more code to go, but it is all related to supplying the correct values for the variables
used in the parameters above:

• role ID

• user ID

• limitation type

• limitation value (the limitation value being the most involved to find)

INI and other basic settings
There are a few variables that will be consistent for every pay-per-download role assignment. We can
define these in an INI file and then call those values in our workflow event. In
"settings/payperdownload.ini" within your extension, enter the following:
<?php /* #?ini charset="utf-8"?

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

[PayPerDownloadSettings]
Which role contains the policy for pay-per-download?
RoleID=6
Which content classes (by identifier) contain pay-per-download files?
ContentClasses[]
ContentClasses[]=product
Which attribute (by identifier) of the above class contains the pay-per-download
file?
Attributes[]
Attributes[product]=download

*/ ?>

If you used the same basic Website Interface install that this article used, your "Pay per download" role
with have an ID of 6. Be sure to double check what the relevant role ID is on your installation by
viewing the role in the Administration Interface. The URL should end in "role/view/<role_id>".

We will access these settings, as well as define the limitation type and user ID, near the top of our
"execute" function. Our function should now look like this:

 public function execute($process, $event)
 {
 $ini = eZINI::instance('payperdownload.ini');

 // Which role contains the policy for pay-per-download?
 $roleID = $ini->variable('PayPerDownloadSettings', 'RoleID');

 // Which content class (by identifier) contains the pay-per-download file?
 $contentClasses = $ini->variable('PayPerDownloadSettings',
'ContentClasses');

 // Which attribute (by identifier) of the above class contains the pay-per-
download file?
 // Note that this is in an array because later we will pass it to
fetchAttributesByIdentifier
 $attributes = $ini->variable('PayPerDownloadSettings', 'Attributes');

 // We want the limit identifier to be by subtree
 $limitIdentifier = 'Subtree';

 // Get the current user
 $userID = $process->UserID;

 /* Not going to use these yet

 // Create the role object
 $role = eZRole::fetch($roleID);

 // Assign the role
 $role->assignToUser($userID, $limitIdentifier, $limitValue);

 // Clear the role cache
 eZRole::expireCache();

 */

 return eZWorkflowType::STATUS_ACCEPTED;

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

 }

Note the appropriate calls to create an instance of our INI file
<http://pubsvn.ez.no/doxygen/4.1/html/classeZINI.html#7ad0c6a1340f500aa97f2c24677f6942> and to
access the variables within the INI file
<http://pubsvn.ez.no/doxygen/4.1/html/classeZINI.html#b5e9a1c407549d857f36d55c1c29c131>. We
were also able to access the user ID from the $process object, which is supplied as part of the standard
workflow event framework.

From the list of variables that we need to do the role assignment, we are left with the undefined
limitation value.

Getting the limitation value
Recall the the limitation value will be a path of node IDs to the download file, so that the user can
download the file associated with each product. Let's take a moment to map out how we are going to
get that path:

• Access the current order information
• Find out what products were purchased
• Find out which (if any) products are of the classes for downloadable products
• Loop through the relevant products and access the file associated with each product
• Find out the node ID path for each file

Information about the current order is also available in the already supplied $process object, as you will
see below. The rest of the code is explained within the comments.

[...]

 // Get the current user
 $userID = $process->attribute('user_id');

 // Get the order ID so that we can find out what objects there were
 $parameters = $process->attribute('parameter_list');
 $orderID = $parameters['order_id'];

 // Get the order
 $thisOrder = eZOrder::fetch($orderID);

 // Create the role object
 $role = eZRole::fetch($roleID);

 // Loop through each product to see whether it's relevant for role
assignment
 foreach ($thisOrder->productItems() as $thisProduct)
 {
 $classIdentifier = $thisProduct["item_object"]->ContentObject-
>attribute('class_identifier');

 // Is this in the list of downloadable products?
 if(in_array($classIdentifier, $contentClasses))
 {

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

 // We have a match, so the last thing we need to do is to fetch the
node of the file
 // First we want to grab the object so that we can get at its
attributes
 $thisObject = $thisProduct["item_object"]->ContentObject;
 $dataMap = $thisObject-
>fetchAttributesByIdentifier(array($attributes[$classIdentifier]));

 // There should only be one $dataMap item, so get the path of that
 foreach($dataMap as $dataMapAttribute)
 {
 $node =
eZContentObjectTreeNode::fetchByContentObjectID($dataMapAttribute-
>attribute('data_int');
 // We're only after the main node
 $limitValue = $node[0]->attribute('path_string');
 }

 // Assign the role
 $role->assignToUser($userID, $limitIdentifier, $limitValue);
 }
 }

 // Clear the role cache
 eZRole::expireCache();

[...]

The additional API code used above involves the following classes:

• eZOrder <http://pubsvn.ez.no/doxygen/4.1/html/classeZOrder.html>: to fetch the order, and
fetch the product items, which gave us eZContentObject objects

• eZContentObject <http://pubsvn.ez.no/doxygen/4.1/html/classeZContentObject.html>: to find
out whether the class identifier for each product matched the list of defined downloadable
products (although in our example every product would have a downloadable file); and to
access the "Download file" attribute to get at the relevant file node(s)

• eZContentObjectTreeNode
<http://pubsvn.ez.no/doxygen/4.1/html/classeZContentObjectTreeNode.html>: to access the
path to the relevant file node(s)

Notice that the limitation value for each downloadable file is finally defined here:

// We're only after the main node
$limitValue = $node[0]->attribute('path_string');

The role assignment is then performed for each downloadable file.

Testing the complete workflow event code
Your complete "execute" function should now look like this:
 public function execute($process, $event)
 {

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

 $ini = eZINI::instance('payperdownload.ini');

 // Which role contains the policy for pay-per-download?
 $roleID = $ini->variable('PayPerDownloadSettings', 'RoleID');

 // Which content class (by identifier) contains the pay-per-download file?
 $contentClasses = $ini->variable('PayPerDownloadSettings',
'ContentClasses');

 // Which attribute (by identifier) of the above class contains the pay-per-
download file?
 // Note that this is in an array because later we will pass it to
fetchAttributesByIdentifier
 $attributes = $ini->variable('PayPerDownloadSettings', 'Attributes');

 // We want the limit identifier to be by subtree
 $limitIdentifier = 'Subtree';

 // Get the current user
 $userID = $process->attribute('user_id');

 // Get the order ID so that we can find out what objects there were
 $parameters = $process->attribute('parameter_list');
 $orderID = $parameters['order_id'];

 // Get the order
 $thisOrder = eZOrder::fetch($orderID);

 // Create the role object
 $role = eZRole::fetch($roleID);

 // Loop through each product to see whether it's relevant for role
assignment
 foreach ($thisOrder->productItems() as $thisProduct)
 {
 $classIdentifier = $thisProduct["item_object"]->ContentObject-
>attribute('class_identifier');

 // Is this in the list of downloadable products?
 if(in_array($classIdentifier, $contentClasses))
 {

 // We have a match, so the last thing we need to do is to fetch the
node of the file
 // First we want to grab the object so that we can get at its
attributes
 $thisObject = $thisProduct["item_object"]->ContentObject;
 $dataMap = $thisObject-
>fetchAttributesByIdentifier(array($attributes[$classIdentifier]));

 // There should only be one $dataMap item, so get the path of that
 foreach($dataMap as $dataMapAttribute)
 {
 $node =
eZContentObjectTreeNode::fetchByContentObjectID($dataMapAttribute-
>attribute('data_int'));
 // We're only after the main node
 $limitValue = $node[0]->attribute('path_string');
 }

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

 // Assign the role
 $role->assignToUser($userID, $limitIdentifier, $limitValue);
 }
 }

 // Clear the role cache
 eZRole::expireCache();

 return eZWorkflowType::STATUS_ACCEPTED;
 }

You can now test your workflow event by buying the book product you created. Use the "Test User"
account on the front-end, add the product to your shopping cart, initiate the checkout process, then pay
for the product using your PayPal Sandbox test buyer account. Then, log in to the Administration
Interface using your Administrator user account, navigate to the "Pay-per-download" role, and see that
it has been assigned correctly. The "Test User" should be using the "Pay-per-download" role, limited to
the download file.

You can also test this by seeing if the Test User account can access
"yoursite.com/Media/Downloads/eZ-Publish-Advanced-Content-Management-PDF".

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Confirmation e-mails and pages
We tested that our role assignment works by having our "Test User" account purchase a product and
manually access the path to the download file node from the media library. However, this is not a
reasonable use case. At the very least, we'd want to give the buyer links to download their purchases.
And to be more user friendly, the links should lead directly to the downloadable file – not to an
intermediary page.

Note: In this section, we will discuss modifying certain templates. However, when modifying any
existing templates (from, for example, the Website Interface design or the standard design), it is best
practice to create your own design extension containing copies that take precedence over the original
templates. This is a straightforward process and you should see the How to Create eZ Publish
Extensions article for an outline
<http://ez.no/developer/articles/an_introduction_to_developing_ez_publish_extensions>.

Confirmation e-mail template
When a buyer has completed the checkout process, eZ Publish will e-mail the order details to the buyer
and to the site administrator. Within this e-mail is an itemized list of purchases:
Product items
1x eZ Publish Advanced Content Management $15.00: $15.00

Subtotal of items: $15.00
Beneath each downloadable item, we will add a download link. The order e-mail template in question
is located at design/base/templates/shop/orderemail.tpl. We will copy this file to our design extension
in order to edit it. Currently, the code to loop through each purchase is as follows:
{section name=ProductItem loop=$order.product_items show=$order.product_items
sequence=array(bglight,bgdark)}
{$ProductItem:item.item_count}x {$ProductItem:item.object_name}
{$ProductItem:item.price_inc_vat|l10n('currency', $locale, $symbol)}:
{$ProductItem:item.total_price_inc_vat|l10n('currency', $locale, $symbol)}

{/section}

We will replace this code with this:

{foreach $order.product_items as $item}
{$item.item_count}x {$item.object_name} {$item.price_inc_vat|l10n('currency',
$locale, $symbol)}: {$item.total_price_inc_vat|l10n('currency', $locale,
$symbol)}
{def $download_classes = ezini('PayPerDownloadSettings', 'ContentClasses',
'payperdownload.ini')}
{if $download_classes|contains($item.item_object.contentobject.class_identifier)}
 {def $download_attributes = ezini('PayPerDownloadSettings', 'Attributes',
'payperdownload.ini')}
 {def $download_attribute =
$download_attributes[$item.item_object.contentobject.class_identifier]}

 - Download: {concat('http://', ezini('SiteSettings', 'SiteURL', 'site.ini'), '/
content/download/',$item.item_object.contentobject.data_map.
$download_attribute.content.id,'/',$item.item_object.contentobject.data_map.
$download_attribute.content.data_map.file.id)|ezurl('no')}
 {undef $download_attributes}

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

 {undef $download_attribute}
{/if}

{/foreach}

The code uses very similar logic to the workflow extension that we created in order to loop through
each purchased product, see whether it is a downloadable product, and if so, access the node of the
download file. Here, we are building a link to the "download" view of the "content" module, which is a
special view that prompts the user through their browser to either download or save the file instead of
showing a page. That view takes two parameters: the ID of the object in question, and the ID of the
attribute containing the file. This is more efficient, user-friendly, and secure than linking to the page
representing the download file's node in the media library. The e-mail text should now look something
like this:

Product items
1x eZ Publish Advanced Content Management $15.00: $15.00
 - Download: http://www.yoursite.com/training/content/download/172/1028

Subtotal of items: $15.00

Order confirmation page
The same download link from the confirmation e-mail should also be given on the order confirmation
page (the last page shown in the checkout process). The default file used, and to be overridden in a
design extension, is located at "extension/ezwebin/design/ezwebin/templates/shop/orderview.tpl". The
existing code loops through each purchased product in a table:
{foreach $order.product_items as $product_item sequence array('bglight',
'bgdark') as $style}
<tr class="{$style}">
 <td>
 <a href={concat("/content/view/full/", $product_item.node_id)|
ezurl}>{$product_item.object_name}
 </td>

We will add to that code to show the "content/download" links for each downloadable product:
{foreach $order.product_items as $product_item sequence array('bglight',
'bgdark') as $style}
<tr class="{$style}">
 <td>
 <a href={concat("/content/view/full/", $product_item.node_id)|
ezurl}>{$product_item.object_name}
 {def $download_classes = ezini('PayPerDownloadSettings', 'ContentClasses',
'payperdownload.ini')}
 {if $download_classes|
contains($product_item.item_object.contentobject.class_identifier)}
 {def $download_attributes = ezini('PayPerDownloadSettings', 'Attributes',
'payperdownload.ini')}
 {def $download_attribute =
$download_attributes[$product_item.item_object.contentobject.class_identifier]}

 - Download: <a href={concat('content/download/',
$product_item.item_object.contentobject.data_map.
$download_attribute.content.id,'/',
$product_item.item_object.contentobject.data_map.

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

$download_attribute.content.data_map.file.id)|
ezurl()}>{$product_item.item_object.contentobject.data_map.
$download_attribute.content.name}
 {undef $download_attributes}
 {undef $download_attribute}
 {/if}
 </td>

This will product a result similar to the screenshot below:

The pay-per-download solution is now complete!

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

Extra considerations
This article has provided a working framework for a pay-per-download solution on eZ Publish.
However, there are many ways that you could improve or customize it to suit your needs.

Order history
The eZ Publish "shop" module has a view for an order history intended for site administrators to view
all orders made on the site. Therefore, it is not suitable to allow normal users to access this view.
However, you can create your own module and view based on what eZ Publish already provides, in
order to show a user only their order history. A sample module called "orderhistory" is provided in the
sample extension download.

You can link to its "view" view (which takes one parameter: the user's ID) of such an order history
module in another template, such as in a user's "My profile" page.

Other workflow uses
With the workflow extension as a starting point, here are a couple of the many other use cases for a
pay-per-download solution that you could add with some extra coding:

• If you are selling software with product keys and have an existing product key generator, you
could trigger this generator whenever someone purchases that product. Using the resulting key,
you could create a new object with that key, and give the current user access to that object.

• Assign access to a particular section (via the assignment of a role or by moving the user to
another group) to support the purchase of value-added website content (for content
subscriptions and the like). Instead of buyers getting access to specific files, they receive access
to entire areas of the site.

Limitations and other possibilities
Here are some limitations of the example extension and some hints on how to overcome them:

• To support multiple downloads per product, use an attribute of the "Related objects" datatype
(instead of the "Related object" datatype we used), then in your workflow code (and all the
templates that display details of an order), loop through all of the related objects.

• In our example, we've assumed that the buyer will complete payment via PayPal. You can

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

install different gateways, such as eZ Authorize, Beanstream (mugo.ca), or even accept offline
payments.

• Neither the eZ PayPal extension nor the example pay-per-download extension change the order
status after they've run. Therefore, by default the order statuses will all say "Pending". In the
case of a pay-per-download situation, you have probably completed the entire buying loop and
it might be useful to distinguish this as "Completed" or "Delivered". You can edit order statuses
in the "Webshop > Order status" page of the "Administration Interface" and then employ the
usage of eZOrder::modifyStatus()
<http://pubsvn.ez.no/doxygen/4.1/html/classeZOrder.html#6c4dbbed0cab9fa3e6d6bc1f896f617
d> in whatever shop-related extension you use.

Resources
You can download the example pay-per-download extension at:
http://www.mugo.ca/Blog/Selling-Pay-Per-Download-Products

Written by Peter Keung of Mugo Web http://www.mugo.ca

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 LicenseCopyright © 2009 Mugo Web

	Selling pay-per-download products
	INTRO
	PAGE 1
	Requirements

	The buyer experience
	Setting up the product and permissions structure
	Product class

	A default Website Interface installation comes with a basic "Product" class, consisting of at least a name, a description, an image, and a price. The "Price" attribute is what makes the content object a recognized product in the webshop, and the other attributes are useful for descriptive purposes.
	For simplicity, we will assume that every product on our site represents a digital download. Therefore, we will modify the existing "Product" class in order to associate a file with each Product object.
	Location for download files
	Create a product object
	Pay-per-download role

	Payment process
	PayPal Sandbox account
	Installing and configuring the eZ PayPal extension
	Setting up the eZ PayPal workflow
	More testing

	Extension: Assigning permissions upon purchase part 1
	workflow.ini
	payperdownloadtype.php
	Activate the extension
	Tell eZ Publish when to use the workflow

	Extension: Assigning permissions upon purchase part 2
	Workflow code in the "execute" function
	Role assignment(s)
	INI and other basic settings
	Getting the limitation value
	Testing the complete workflow event code

	Confirmation e-mails and pages
	Confirmation e-mail template
	Order confirmation page

	Extra considerations
	Order history
	Other workflow uses
	Limitations and other possibilities
	Resources

